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Abstract
We compute the volume of the convex (N2 −1)-dimensional set MN of density
matrices of size N with respect to the Hilbert–Schmidt measure. The hyper-
area of the boundary of this set is also found and its ratio to the volume
provides information about the structure of MN . Similar investigations
are also performed for the smaller set of all real density matrices. As an
intermediate step, we analyse volumes of the unitary and orthogonal groups
and of the flag manifolds.

PACS number: 03.65.Ta

1. Introduction

Although the notion of a density matrix is one of the fundamental concepts discussed in the
elementary courses of quantum mechanics, the structure of the set MN of all density matrices
of size N is not easy to characterize [1–3]. The only exception is the case N = 2, for which
M2 embedded in R

3 has the appealing form of the Bloch ball. Its boundary, ∂M2, consists
of pure states and forms the Bloch sphere. For larger numbers of states the dimensionality
of MN grows quadratically with N, which makes its analysis involved. In particular, for
N > 2 the set of pure states forms a (2N − 2)-dimensional manifold, of measure zero in the
(N2 − 2)-dimensional boundary ∂MN .

In this work, we compute the volume of MN with respect to the Hilbert–Schmidt (HS)
measure. The HS measure is defined by the HS metric which is distinguished by the fact that
it induces the flat, Euclidean geometry into the set of mixed states. The (hyper)area of the
boundary of the space of the density matrices, ∂MN , is also computed, as well as the area of
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(hyper)edges of this set—the HS volume of the subspace of density matrices of an arbitrary
rank k < N . In the special case of k = 1, we obtain a well-known formula for the volume of
the space of pure states, equivalent to the complex projective manifold CP N−1.

A similar analysis is also performed for the set of real density matrices. To calculate the
volume of the set of complex (real) mixed states, we use the volume of the unitary (orthogonal)
groups and the volume of the complex (real) flag manifolds—these results are described in
the appendix.

The motivation for such a study is twofold. On one hand, the complex structure of the set of
mixed quantum states is interesting in itself. It is well known that for N > 2 the D = N2 − 1
dimensional set MN is neither a D-ball nor a polytope, but what does it look like? More
like a ball or more like a polytope? Instead of using techniques of differential geometry and
computing the average curvature on the boundary of the set MN , we compute the volume of its
boundary and compare it with the volume of the D − 1 sphere, which surrounds the ball of the
same volume as MN . Such a comparison shows us to what extent the shape of the body of
mixed quantum states differs from the ball, in that sense that more (hyper)area of the surface
is needed to cover the same volume.

Complementary information characterizing the structure of a given set is obtained by
calculating the ratio between the area of its boundary and its volume. Among all D-dimensional
bodies of a fixed volume, such a ratio is the smallest for the D-ball. Hence computing such
a ratio for the D-dimensional body of mixed quantum states we may compare it with similar
ratios obtained for D-balls, D-cubes and D-simplices.

On the other hand, our investigations might be useful in characterizing the absolute volume
of the subset of mixed states distinguished by a certain attribute. For instance, if � describes a
composite system, one may ask, what is the volume of the set of separable (entangled) mixed
states [4, 5]. Furthermore, assume we are given a concrete mixed quantum state �, it is natural
to ask whether � is in some sense typical, e.g., whether its von Neumann entropy is close to
the average taken over the entire set MN with respect to the HS measure. To compute such
averages (see, e.g., [6]) it is useful to know the volume of MN and to make use of integrals
developed for such a calculation.

2. Geometry of MN with respect to the Hilbert–Schmidt metric

The set of mixed quantum states MN consists of Hermitian, positive matrices of size N,
normalized by the trace condition

MN := {� : � = �†; � � 0; Tr � = 1; dim(ρ) = N}. (2.1)

It is a compact convex set of dimensionality D = N2 − 1. Any density matrix may be
diagonalized by a unitary rotation,

� = U�U−1 (2.2)

where � is a diagonal matrix of eigenvalues �i . Due to the trace condition they satisfy∑N
i=1 �i = 1, so the space of spectra is isomorphic with a (N − 1)-dimensional simplex

�N−1.
Let B be a diagonal unitary matrix. Since � = UB�B†U †, in the generic case of a

non-degenerate spectrum the unitary matrix U is determined up to N arbitrary phases entering
B. To specify uniquely the unitary matrix of eigenvectors U, it is thus sufficient to select a point
on the coset space F l

(N)

C
:= U(N)/[U(1)]N , called the complex flag manifold. The generic

density matrix is thus determined by (N −1) parameters determining eigenvalues and N2 −N

parameters related to eigenvectors, which sum up to the dimensionality D of MN . Although
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for degenerate spectra the dimension of the flag manifold decreases (see, e.g., [3, 7]), these
cases of measure zero do not influence the estimation of the volume of the entire set of density
matrices. Several different distances may be introduced into the set MN (see for instance
[7, 8]). In this work we shall use the Hilbert–Schmidt metric, which induces the flat geometry.

The Hilbert–Schmidt distance between any two density operators is defined as the Hilbert–
Schmidt (Frobenius) norm of their difference,

DHS(�1, �2) = ‖�1 − �2‖HS =
√

Tr[(�1 − �2)2]. (2.3)

The set of all mixed states of size two acquires under this metric the geometry of the Bloch
ball B3 embedded in R

3. Its boundary, ∂B3 = S2 contains all pure states and is called the
Bloch sphere. To show this let us use the Bloch representation of a N = 2 density matrix

� = I

N
+ �τ · �λ (2.4)

where �λ denotes the vector of three rescaled traceless Pauli matrices {σx, σy, σz}/
√

2. They
are normalized according to Tr λ2

i = 1. The three-dimensional Bloch vector �τ is real due
to Hermiticity of �. Positivity requires Tr �2 � 1 and this implies |�τ | � 1/

√
2 =: R2.

Demanding equality one distinguishes the set of all pure states, �2 = �, which form the Bloch
sphere of radius R2. Consider two arbitrary density matrices and express their difference
�1 − �2 in the representation (2.4). The entries of this difference consist of the differences
between components of both Bloch vectors �τ1 and �τ2. Therefore

DHS
(
��τ1 , ��τ2

) = DE(�τ1, �τ2) (2.5)

where DE is the Euclidean distance between both Bloch vectors in R
3. This proves that with

respect to the HS metric the set M2 possesses the geometry of a ball B3 . The unitary rotations
of a density matrix � → U�U † correspond to the rotations of �τ in R

3. This is due to the fact
that the adjoint representation of SU(2) is isomorphic with SO(3).

The Hilbert–Schmidt metric induces a flat geometry inside MN for arbitrary N. Any state
� may be represented by (2.4), but now the �λ represents an operator-valued vector which
consists of D = N2 − 1 traceless Hermitian generators of SU(N), which fulfil Tr λiλj = δij .
This generalized Bloch representation of density matrices for arbitrary N was introduced by
Hioe and Eberly [9], and recently used in [10]. The case N = 3, related to the Gell-Mann
matrices, is discussed in detail in a paper by Arvind et al [11]. The generalized Bloch vector
�τ (also called coherence vector) is D dimensional. In the general case of an arbitrary N the
right-hand side of (2.5) denotes the Euclidean distance between two Bloch vectors in R

N2−1.
Positivity of ρ implies the bound for its length

|�τ | � DHS(I/N, |ψ〉〈ψ |) =
√

N − 1

N
=: RN. (2.6)

In contrast to the Bloch sphere, the complex projective space CPN−1, which contains all
pure states, forms for N > 2 only a measure zero, simply connected 2(N − 1)-dimensional
subset of the (N2 − 2)-dimensional sphere of radius RN embedded in R

N2−1. Thus not every
vector �τ of the maximal length RN represents a quantum state. This is related to the fact that
for N � 3 the adjoint representation of SU(N) forms only a subset of SO(N2 − 1), (see, e.g.,
[12]). Sufficient and necessary conditions for a Bloch vector to represent a pure state were
given in [11] for N = 3, and in [13] for an arbitrary N. Furthermore, by far not all vectors of
length shorter then RN represent a quantum state, as not all the points inside a hyper-sphere
belong to the simplex inscribed inside it. Necessary conditions for a Bloch vector to represent
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a quantum-mixed state were recently provided by Kimura [14]. On the other hand, there exists
a smaller sphere inscribed inside the set MN . Its radius reads [2]

rN = DHS(I/N, �N−1)
1√

N(N − 1)
= RN

N − 1
(2.7)

where �N−1 denotes any state with the spectrum
(

1
N−1 , . . . , 1

N−1 , 0
)
.

3. Hilbert–Schmidt measure

Any metric in the space of mixed quantum states generates a measure, inasmuch as one can
assume that drawing random density matrices from each ball of a fixed radius is equally
likely. The balls are understood with respect to a given metric. In this work we investigate
the measure induced by the Hilbert–Schmidt distance (2.3). The infinitesimal distance takes
a particularly simple form

(dsHS)
2 = Tr[(d�)2] (3.1)

valid for any dimension N. Making use of the diagonal form ρ = U�U−1 we may write

d� = U [d� + U−1 dU� − �U−1 dU ]U−1. (3.2)

Thus (3.1) can be rewritten as

(dsHS)
2 =

N∑
i=1

(d�i)
2 + 2

N∑
i<j

(�i − �j)
2|(U−1 dU)ij |2. (3.3)

Since the density matrices are normalized,
∑N

i=1 �i = 1, thus
∑N

i=1 d�i = 0. Hence one
may consider the variation of the Nth eigenvalue as a dependent one, d�N = −∑N−1

i=1 d�i ,
which implies

N∑
i=1

(d�i)
2 =

N−1∑
i=1

(d�i)
2 +

(
N−1∑
i=1

d�i

)2

=
N−1∑
i,j=1

d�igij d�j . (3.4)

The corresponding volume element gains a factor
√

det g, where g is the metric in the (N −1)-
dimensional simplex �N−1 of eigenvalues. From (3.4) one may read out the explicit form of
the metric gij

g =




1 0
. . .

0 1


 +




1 · · · 1
...

. . .
...

1 · · · 1


 . (3.5)

It is easy to check that the spectrum of the (N − 1)-dimensional matrix g consists of one
eigenvalue equal to N and the remaining N − 2 eigenvalues equal to unity, so that det g = N .
Thus the Hilbert–Schmidt volume element is given by

dVHS =
√

N

N−1∏
j=1

d�j

1···N∏
j<k

(�j − �k)
2

∣∣∣∣∣∣
1···N∏
j<k

2 Re(U−1 dU)jk Im(U−1 dU)jk

∣∣∣∣∣∣ (3.6)

and has the following product form

dV = dµ(�1,�2, . . . , �N) × dνHaar. (3.7)

The first factor depends only on the eigenvalues �i , while the latter one depends on the
eigenvectors of � which compose the unitary matrix U.
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Any unitary matrix may be considered as an element of the Hilbert–Schmidt space of
operators with the scalar product 〈A|B〉 = Tr A†B. This suggests the following definition of
an invariant metric of the unitary group U(N),

(ds)2 := − Tr(U−1 dU)2 =
N∑

jk=1

|(U−1 dU)jk|2 =
N∑

j=1

|(U−1 dU)jj |2 + 2
N∑

j<k=1

|(U−1 dU)jk|2.

(3.8)

This metric induces the unique Haar measure νHaar on U(N), invariant with respect to unitary
transformations, νHaar(W) = νHaar(UW), where W denotes an arbitrary measurable subset
of U(N). Integrating the volume element corresponding to (3.8) over the unitary group we
obtain the volume

Vol[U(N)] = (2π)N(N+1)/2

1!2! · · · (N − 1)!
. (3.9)

Integrating the volume element with the diagonal terms in (3.8) omitted (in that case the
diagonal elements of U are fixed by Uii � 0) we obtain the volume of the complex flag
manifold, F l

(N)

C
:= U(N)/[U(1)N ],

Vol
[
F l

(N)

C

] = Vol[U(N)]

(2π)N
= (2π)N(N−1)/2

1!2! · · · (N − 1)!
. (3.10)

Both results are known in the literature for almost fifty years [15]. However, since many
different conventions in defining the volume of the unitary group are in use [16–22] we sketch
a derivation of the above expressions in the appendix and provide a list of related results.

Comparing formulae (3.6) and (3.8) we recognize that the measure ν, responsible for
the choice of eigenvectors of �, is the natural measure on the complex flag manifold
F l

(N)

C
= U(N)/[U(1)N ] induced by the Haar measure on U(N). Since the trace is

unitarily invariant, it follows directly from the definition (3.1) that the volume element
with respect to the HS measure is invariant with respect to the group of unitary rotations,
dVHS(�) = dVHS(U�U †). Such a property is characteristic of any product measure of the form
(3.7). Several product measures with different choices of µ were examined in [5, 6, 22, 23].

Integrating the volume element (3.6) with respect to the eigenvectors of � distributed
according to the Haar measure one obtains the probability distribution in the simplex of
eigenvalues

P
(2)
HS (�1, . . . , �N) = CHS

N δ


1 −

N∑
j=1

�j


 N∏

j<k

(�j − �k)
2 (3.11)

where for future convenience we have decorated the symbol P with the superscript (2) consistent
with the exponent in the last factor. As discussed in the following section the normalization
constant CHS

N may be expressed [6] in terms of the Euler gamma function (x) [24]

CHS
N = (N2)∏N−1

j=0 (N − j)(N − j + 1)
. (3.12)

The above joint probability distribution, derived by Hall [26], defines the measure µHS in
the space of diagonal matrices and the Hilbert–Schmidt measure (3.6) in the space of density
matrices MN .

Interestingly, the very same measure may be generated by drawing random pure states
|φ〉 ∈ H1 ⊗ H2 of a composite N × N system according to the Fubini–Study measure on
CPN2−1. Then the density matrices of size N obtained by partial trace, � = Tr2(|φ〉〈φ|), are
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distributed according to the HS measure [6, 26, 27]. Alternatively, one may generate a random
matrix A of the Ginibre ensemble (non-Hermitian complex matrix with all entries independent
Gaussian variables with zero mean and a fixed variance) and obtain a HS distributed random
density matrix by a projection � = A†A/Tr A†A [6]. A similar approach was recently
advocated by Tucci [25], who used the name ‘uniform ensemble’ for just such an ensemble of
density matrices generated according to the HS measure.

4. Volume of the set of mixed states

For convenience let us introduce generalized normalization constants

1

C
(α,β)

N

:=
∫ ∞

0
d�1 · · · d�Nδ

(
N∑

i=1

�i − 1

)
N∏

i=1

�α−1
i

∏
i<j

|�i − �j |β (4.1)

with α, β > 0. These constants may be calculated using the formula for the Laguerre ensemble,
discussed in the book of Mehta [29],∫ ∞

0
d�1 · · · d�N exp

(
−

N∑
i=1

�i

)
N∏

i=1

�α−1
i

∏
i<j

|�i − �j |β

=
N∏

j=1

[
[1 + jβ/2][α + (j − 1)β/2]

[1 + β/2]

]
. (4.2)

Substituting x2
i = �i we may bring the latter integral to the Gaussian form. Expressing it in

spherical coordinates we get the integral (4.1) and eventually obtain

1

C
(α,β)

N

:= 1

[αN + βN(N − 1)/2]

N∏
j=1

[
[1 + jβ/2][α + (j − 1)β/2]

[1 + β/2]

]
. (4.3)

By definition CHS
N = C

(1,2)
N and the special case of the above expression reduces to (3.12).

To obtain the Hilbert–Schmidt volume of the set of mixed states MN one has to integrate
the volume element (3.6) over eigenvalues and eigenvectors. By definition the first integral
gives 1

/
CHS

N , while the second is equal to the volume of the flag manifold. To make the
diagonalization transformation (2.2) unique, one has to restrict to a certain order of eigenvalues,
say, �1 < �2 < · · · < �N (a generic density matrix is not degenerate), which corresponds to
a choice of a certain Weyl chamber of the eigenvalue simplex �N−1. In other words, different
permutations of the vector of N generically different eigenvalues �i belong to the same unitary
orbit. The number of different permutations (Weyl chambers) equals to N !, so the volume
reads

V
(2)
N := VolHS(MN) =

√
N

N !

Vol
(
F l

(N)

C

)
CHS

N

. (4.4)

The square root stems from the volume element (3.6), and the index (2) refers to the general
case of complex density matrices. Making use of (3.12) and (3.10) we arrive at the final result4

V
(2)
N =

√
N(2π)N(N−1)/2 (1) · · · (N)

(N2)
. (4.5)

Substituting N = 2 we are pleased to receive V
(2)

2 = π
√

2/3—exactly the volume of the
Bloch ball B3 of radius R2 = 1/

√
2. This result may be also found in the notes of Caves [22],

who also derived an explicit integral for the volume of the set of mixed states for arbitrary N.
4 Apart from the first factor

√
N , the same formula has already appeared in the work of Tucci [25].
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The next result V
(2)

3 = π3/(840
√

3) allows us to characterize the difference between
the set M3 ⊂ R

8 and the ball B8. The set of mixed states is inscribed into the sphere
of radius R3 = √

2/3 ≈ 0.816, while the maximal ball contained inside has the radius
r3 = R3/2 ≈ 0.408. Using equation (6.1) we find the radius of the 8-ball of volume V3 is
ρ3 ≈ 0.519. The distance from the centre of M3 to its boundary varies with the direction in R

8

from r3 to R3, in contrast to the N = 2 case of the Bloch ball, for which R2 = r2 = ρ2 = 1/
√

2.
The average HS-distance from the centre of M3 to its boundary is equal to ρ3. Similar
calculations performed for N = 4 give the maximal radius R4 = √

3/4 ≈ 0.866, the minimal
radius r4 = R4/3 ≈ 0.289 and the ‘mean’ radius ρ4 ≈ 0.428 which generates the ball B15

of the same volume as V4. In general, let ρN denote the radius of a ball BN2−1 of the same
volume as the set MN .

The volume VN tends to zero if N → ∞, but there is no reason to worry about it. The
same is true for the volume of the N-ball, see (6.1). This is just a consequence of the choice of
the units. We are comparing the volume of an object in R

N with the volume of a hypercube
CN of side one, and it is easy to understand that, the larger the dimension, the smaller the
volume of the ball inscribed into it.

5. Area of the boundary of the set of mixed states

The boundary of the set of mixed states is far from being trivial. Formally it may be written
as a solution of the equation det � = 0 which contains all matrices of a lower rank. The
boundary ∂MN contains orbits of different dimensionality generated by spectra of different
rank and degeneracy (see, e.g., [3, 7]). Fortunately all of them are of measure zero besides the
generic orbits created by unitary rotations of diagonal matrices with all eigenvalues different
and one of them equal to zero; � = {0,�2 < �3 < · · · < �N }. Such spectra form the
(N − 2)-dimensional simplex �N−2, which contains (N − 1)! the Weyl chambers—this is the
number of possible permutations of elements of � which all belong to the same unitary orbit.

Hence the hyper-area of the boundary may be computed in a way analogous to (4.4),

S
(2)
N := VolHS(MN) =

√
N − 1

(N − 1)!

Vol
(
F l

(N)

C

)
C

(3,2)
N−1

. (5.1)

The change of the parameter α in (4.1) from 1 to 3 is due to the fact that by setting one
component of an N-dimensional vector to zero the corresponding Vandermonde determinant
of size N leads to the determinant of size N − 1 for β = 1 and to the square of the determinant
for β = 2. Applying (3.12) and (3.10) we obtain an explicit result

S
(2)
N = √

N − 1(2π)N(N−1)/2 (1) · · · (N + 1)

(N)(N2 − 1)
. (5.2)

For N = 2 we get S
(2)
2 = 2π—just the area of the Bloch sphere S2 of radius R2 = 1/

√
2. The

area of the 7-dim boundary of M3 reads S
(2)
3 = √

2π3/105.
In an analogous way we may find the volume of edges, formed by the unitary orbits of

the vector of eigenvalues with two zeros. More generally, states of rank N − n are unitarily
similar to diagonal matrices with n eigenvalues vanishing, � = {0, . . . , 0,�n+1 < �n+2 <

· · · < �N }. These edges of order n are N2 −n2 −1 dimensional, since the dimension of the set
of such spectra is N −n−1, while the orbits have the structure of U(N)/[U(n)× (U(1))N−n]
and dimensionality N2 −n2 − (N −n). Repeating the reasoning used to derive (5.1) we obtain
the volume of the hyperedges

S
(2)
N,n =

√
N − n

(N − n)!

1

C
(1+2n,2)
N−n

Vol
(
F l

(N)

C

)
Vol

(
F l

(n)

C

) . (5.3)
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Note that for n = 0 this expression gives the volume V
(2)
N of the set MN , for n = 1 the

hyperarea S
(2)
N of its boundary ∂MN and for n � 2 the area of the edges of rank N − n. In the

extreme case of n = N − 1, the above formula gives correctly the volume of the set of pure
states (the states of rank one), Vol(CPN−1) = (2π)N−1/(N), see appendix.

6. The ratio: area/volume

Certain information about the structure of a convex body may be extracted from the ratio γ of
the (hyper)area of its boundary to its volume. The smaller the coefficient γ (with the diameter
of the body kept fixed), the better the body investigated may be approximated by a ball, for
which such a ratio is minimal. And conversely, the larger γ , the less the body resembles a
ball, since more (hyper)area is needed to bound a given volume.

To analyse simple examples let us recall the volume of the N-dimensional unit ball
BN ⊂ R

N and the volume SN of the unit N-sphere SN ⊂ R
N+1

BN := Vol(BN) = Vol(SN−1)

N
= π

N
2


(

N
2 + 1

) ∼ 1√
2π

(
2πe

N

) N
2

, (6.1)

where the Stirling expansion [24] was used for large N. For small N we obtain the well-known
expressions, S1 = 2π, S2 = 4π, S3 = 2π2, S4 = 8π2/3 and B2 = π,B3 = 4π/3, B4 = π2/2.
If the spheres and balls have radius L then the scale factor LN has to be supplied. In odd
dimensions the volume of the sphere simplifies, Vol(S2k−1) = 2πk/(k − 1)!.

Since the boundary of a N-ball is formed by a N − 1 sphere, ∂BN = SN−1, the ratio γ for
a ball of radius L reads

γ (BN) := Vol(∂BN)

Vol(BN)
= N

L
. (6.2)

Intuitively this ratio will be the smallest possible among all N-dimensional sets of the same
volume. Hence let us compare it with an analogous result for a hypercube �N of side L and
volume LN . The cube has 2N corners and 2N faces, of area LN−1 each. We find the ratio

γ (�N) := Vol(∂�N)

Vol(�N)
= 2

N

L
(6.3)

which grows twice as fast as for N-balls. Another comparison can be made with simplices
N , generated by (N + 1) equally distant points in R

N . The simplex 2 is a equilateral
triangle, while 3 is a regular tetrahedron. The volume of a simplex of side L reads
Vol(N) = [LN

√
(N + 1)/2N ]/N !. Since the boundary of N consists of N + 1 simplices

N−1 we obtain

γ (N) := Vol(∂N)

Vol(N)
=

√
2N

N + 1

N(N + 1)

L
. (6.4)

In this case the ratio γ grows quadratically with N, which reflects the fact that simplices do
have much ‘sharper’ corners, in contrast to the cubes, so more (hyper)area of the boundary
is required to cover a given volume. Furthermore, if one defines a hyper-diamond as two
simplices glued along one face, its volume is twice the volume of N while its boundary
consists of 2N simplices N−1, so the coefficient γ grows exactly as N2.

Interestingly, the ratio γ of the N-cube is the same as for the N-ball inscribed in, which
has much smaller volume. The same property is characteristic for the N-simplex. Hence
another possibility to characterize the shape of any convex body F is to compute the ratio
χ1 := Vol[B1(F )]/Vol(F ), and χ2 := Vol(F )/Vol[B2(F )], where B1(F ) is the largest ball
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inscribed in F while B2(F ) is the smallest ball in which F may be inscribed. As stated above
for cubes and simplices one has γ (F ) = γ [B1(F )].

Such quotients may be computed for the rather complicated convex body of mixed
quantum states analysed with respect to the Hilbert–Schmidt measure. Using expressions
(4.4) and (5.1) we find

γN := Vol(∂MN)

Vol(MN)
= N !

√
N − 1√

N(N − 1)!

C
(1,2)
N

C
(3,2)
N−1

=
√

N(N − 1)(N2 − 1). (6.5)

The first coefficients read γ2 = 3
√

2, γ3 = 8
√

6 and γ4 = 15
√

12, so they grow with N faster
than N2. A direct comparison with the results received for balls or cubes would be unfair,
since here N does not denote the dimension of the set MN ⊂ R

D . Substituting the right
dimension, D = N2 − 1, we see that the area/volume ratio for the mixed states increases with
the dimensionality as γ ∼ D3/2. The linear scaling factor L, equal to the radius RN , tends
asymptotically to unity and does not influence this behaviour.

Note that the set of mixed states is convex and is inscribed into the sphere of radius RN ,
so for each finite N the ratio γN remains finite. On the other hand, the fact that this coefficient
increases with the dimension D much faster than for balls or cubes, sheds some light on the
intricate structure of the set MN . It touches the hypersphere SN2−2 of radius RN along the
(2N − 2)-dimensional manifold of pure states. However, to be characterized by such a value
of the coefficient γ it is a rather ‘thin’ set, and a lot of hyper-area of the boundary is used to
encompass its volume. In fact, for any mixed state � ∈ MN its distance to the boundary ∂MN

does not exceed the radius rN ∼ 1/N . Another comparison can be made with the D-ball of
radius L = rN = [N(N − 1)]−1/2, inscribed into MN . Although its volume is much smaller
than this of the larger set of mixed states, its area to volume ratio, γ = D/L, is exactly equal to
(6.5) characterizing MN . In other words, for any dimensionality N the set of mixed quantum
states belongs to the class of bodies for which γ (F ) = γ (B1(F )) holds.

Using the notion of the effective radius ρN , introduced in section 4, we may express
the coefficients χi for the set MN as a ratio between radii raised to the power equal to the
dimensionality, D = N2 − 1. The exact values of χ1 = (rN/ρN)D and χ2 = (ρN/RN)D , as
well as their product χ = χ1χ2, may be readily obtained from (4.5). Let us only note the large
N behaviour, χ(MN) = (N − 1)−N2+1, so it grows with the dimensionality D as D−D/2 while
χ(BN) = 1, χ(�N) = N−N/2 and χ(N) ≈ N−N .

7. Rebits: real density matrices

Even though from the physical point of view one should in general consider the entire set
MN of complex density matrices, we propose now to discuss its proper subset: the set of real
density matrices. This set, denoted by MR

N , is of smaller dimension D1 = N(N + 1)/2 − 1 <

D = N2−1, and any reduction of dimensionality simplifies the investigations. While complex
density matrices of size two are known as qubits, the real density matrices are sometimes called
rebits [28]. In the sense of the HS metric the space of rebits forms the full circle B2, which
may be obtained as a slice of the Bloch ball B3 along a plane containing I/2.

To find the volume of the set MR

N we will repeat the steps (3.2)–(4.5) for real symmetric
density matrices which may be diagonalized by an orthogonal rotation, � = O�OT . The
expressions

d� = O[d� + O−1 dO� − �O−1 dO]O−1 (7.1)
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and

(dsHS)
2 =

N∑
i=1

(d�i)
2 + 2

N∑
i<j

(�i − �j)
2|(O−1 dO)ij |2 (7.2)

allow us to obtain the HS volume element, analogous to (3.6),

dV
(1)

HS =
√

N

N−1∏
j=1

d�j

1···N∏
j<k

|�j − �k| ·
∣∣∣∣∣∣
1···N∏
j<k

√
2(O−1 dO)jk

∣∣∣∣∣∣ . (7.3)

As in the complex case the measure has the product form, and the last factor is the volume
element of the orthogonal group (see appendix). Orthogonal orbits of a non-degenerate
diagonal matrix form real flag manifolds F l

(N)

R
= O(N)/[O(1)]N of the volume

Vol
[
F l

(N)

R

] = Vol[O(N)]

2N
= (2π)N(N−1)/4πN/2

[1/2] · · · [N/2]
. (7.4)

Here O(1) is the reflection group Z2 with volume 2.
The volume element (7.3) leads to the following probability measure in the simplex of

eigenvalues

P
(1)
HS (�1, . . . , �N) = C

(1,1)
N δ


1 −

N∑
j=1

�j


 N∏

j<k

|�j − �k| (7.5)

with the normalization constant given in (4.3). Note the linear dependence on the differences of
eigenvalues, in contrast to the quadratic form present in (3.11). Taking into account the number
N ! of different permutations of the elements of the spectrum � we obtain the expression for
the volume of the set of MR

N ,

V
(1)
N := VolHS

(
MR

N

) =
√

N

N !

Vol
(
F l

(N)

R

)
C

(1,1)
N

(7.6)

which gives

V
(1)
N =

√
N

N !

2N(2π)N(N−1)/4
[

N+1
2

]


[
N(N+1)

2

]


[
1
2

] N∏
k=1



[
1 +

k

2

]
. (7.7)

As in the complex case we find the volume of the boundary of MR

N , and in general, the
volume of edges of order n with 0 � n � N − 1. In the case of real density matrices these
edges are N(N + 1)/2 − 1 − n(n + 1)/2 dimensional, since the dimension of the set of such
spectra is N − n − 1, and the orbits have the structure of O(N)/[O(n) × (O(1))N−n] and
dimensionality N(N − 1)/2 − n(n − 1)/2. In analogy to (5.3) we obtain

S
(1)
N,n =

√
N − n

(N − n)!

1

C
(1+n,1)
N−n

Vol
(
F l

(N)

R

)
Vol

(
F l

(n)

R

) (7.8)

which for n = 1 gives the volume S of the boundary ∂MR

N , and allows us to compute the ratio
area to volume,

γ
(
MR

N

)
:= Vol

(
∂MR

N

)
Vol

(
MR

N

) = N !
√

N − 1√
N(N − 1)!

C
(1,1)
N

C
(2,1)
N−1

=
√

N(N − 1)(N − 1)(1 + N/2). (7.9)

The product of the last two factors is equal to the dimensionality of the set of real density
matrices, D1 = N(N + 1)/2 − 1. Therefore, just as in the complex case, the ratio area
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to volume for MR

N coincides with such a ratio γ = D1/L for the maximal ball of radius
L = rN = [N(N − 1)]−1/2 contained in this set. In the simplest case of N = 2 we receive
V

(1)
2 = π/2—the volume of the circle B2 of radius R2 = 1/

√
2. The volume of the boundary,

S = π
√

2, is equal to the circumference of the circle of radius R2 = 1/
√

2, and gives γ = 2
√

2
in agreement with (7.9).

8. Concluding remarks

We have found the volume V and the surface area S of the D = N2 − 1 dimensional set of
mixed states MN acting in the N-dimensional Hilbert space, and its subset MR

N containing real
symmetric matrices. Although the volume of the unitary (orthogonal) group depends on the
definition used, as discussed in the appendix, the volume of the set of mixed states has a well-
specified, unambiguous meaning. For instance, for N = 2 the volume V2 may be interpreted
as the ratio of the volume of the Bloch ball (of radius R2 fixed by the Hilbert–Schmidt metric),
to the volume of the cube spanned by three orthonormal vectors of the HS space: the rescaled
Pauli matrices, {σx, σy, σz}/

√
2.

On one hand, these explicit results may be applied for estimation of the volume of the
set of entangled states [4, 5, 30–32], or yet another subset of MN . It is also likely that some
integrals obtained in this work will be useful in such investigations.

On the other hand, outcomes of this paper advance our understanding of the properties of
the set of mixed quantum states. The ratio of the hyperarea of the boundary of D-balls to their
volume grows linearly with the dimension D. The same ratio for D-simplices behaves as D2,
while for the sets of complex and real density matrices it grows with the dimensionality D as
D3/2. Hence these geometrical properties of the convex body of mixed states are somewhere
in between the properties of D-balls and D-simplices.

Furthermore, we have shown that for any N the sets of complex (real) density matrices
belong to the family of sets for which the ratio area to volume is equal to such a ratio computed
for the maximal ball inscribed into this set.

It is necessary to emphasize that a similar problem of estimating the volume of the set of
mixed states could also be considered with respect to other probability measures. In particular,
analogous results presented by us in [33] for the measure [26, 34] related to the Bures distance
[35, 36] allow us to investigate similarities and differences between the geometry of mixed
states induced by different metrics.
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Appendix. Volumes of the unitary groups and flag manifolds

Although the volume of the unitary (orthogonal) group and the complex (real) flag manifold
that we use in our calculations were computed by Hua many years ago [15], one may find in
more recent literature related results, which in some cases seem to be contradictory. However,
different authors used different definitions of the volume of the unitary group [16–20, 22], so
we review in this appendix the three most common definitions and compare the results.
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A.1. Unitary group U(N)

We shall recall (3.8) the metric of the unitary group U(N) induced by the Hilbert–Schmidt
scalar product and used by Hua [15]

(ds)2 := −Tr(U−1 dU)2 =
N∑

j=1

|(U−1 dU)jj |2 + 2
N∑

j<k=1

|(U−1 dU)jk|2 (A1)

which is left- and right-invariant under unitary transformations. The volume element is then
given by the product of independent differentials times the square root of the determinant of
the metric tensor. One has still the freedom of an overall scale factor for (A1) which appears
then correspondingly in the volume element. To keep invariance the ratio of the prefactors
cdiag and coff of the diagonal and off-diagonal terms has to be fixed. Nevertheless one may
introduce different scalings of the volume elements which we call dνA, dνB, dνC :

dνA :=
∣∣∣∣∣∣

N∏
i=1

(U−1 dU)ii

1···N∏
j<k

2 Re(U−1dU)jk Im(U−1 dU)jk

∣∣∣∣∣∣ cdiag = 1 coff = 2

(A2)

dνB := 2−N(N−1)/2 dνA cdiag = 1 coff = 1 (A3)

dνC := 2−N/2 dνB cdiag = 1/2 coff = 1. (A4)

The product in (A2), consistent with (A1), has to be understood in the sense of alternating
external multiplication of differential forms. Only the first convention (A2) labelled by the
index A was used in the main part of this work. Note that the normalization (A4) corresponds
to the rescaled line element (ds)2 = − 1

2 Tr(U−1 dU)2. In general we may scale

dν
X

:= (cdiag)
N/2(coff)

N(N−1)/2 dνB (A5)

where the label X denotes a certain choice of the prefactors cdiag and coff for diagonal or
off-diagonal elements in (A1). All these volumes correspond to the Haar measure which is
unique up to an overall constant scale factor. Thus we deduce that

VolA[U(N)] = 2N(N−1)/2 VolB[U(N)] and VolC[U(N)] = 2−N/2 VolB[U(N)].

(A6)

In order to determine the volume of the unitary group let us recall the fibre bundle structure
U(N −1) → U(N) → S2N−1, see, e.g., [37]. This topological fact implies a relation between
the volume of the unit sphere S2N−1 and the volume of the unitary group defined by the
measure dνB (A3), for which all components of the vector (U−1 dU)jk have unit prefactors,

VolB[U(N)] = VolB[U(N − 1)] × Vol[S2N−1]. (A7)

To prove this equality by a direct calculation, it is convenient to parametrize a unitary matrix
of size N as

UN =
[

eiφ 0
0 UN−1

] [√
1 − |h|2 −h†

h
√

I − h ⊗ h†

]
(A8)

where φ ∈ [0, 2π) is an arbitrary phase and h is a complex vector with N − 1 components
such that |h| � 1. This representation shows (we may also arrange the two matrices in (A8)
in the opposite order) the relation

U(N)/[U(1) × U(N − 1)] = CPN−1 (A9)
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since the second factor represents the complex projective space CPN−1. In fact, if one
calculates the metric (A1) we find

(dsN)2 ∼= (ds1)
2 + (dsN−1)

2 + 2(dsh)
2 (A10)

where (dsN)2 means the metric for U(N) (the sign ∼= shall indicate that we have omitted
some shifts in (ds1)

2 and (dsN−1)
2 that are not relevant for the volume) and (dsh)

2 means the
metric of the complex projective space CPN−1 with radius 1

(dsh)
2 = dh† dh +

(h† dh + dh†h)2

4(1 − |h|2) +
(h† dh − dh†h)2

4
. (A11)

It is easy to see by diagonalizing this metric (eigenvalues 1−|h|2, 1/(1−|h|2), and otherwise 1)
that the corresponding volume is that of the real ball B2N−2 with radius 1 and dimension 2N−2.
Thus one obtains

VolX[U(N)] = VolX[U(N − 1)] × VolX[U(1)] × cN−1
off Vol[B2N−2] (A12)

which for the measure (A3) with cdiag = coff = 1 reduces to (A7). Applying this relation
N − 1 times we obtain

VolB[U(N)] = Vol[S2N−1] × · · · × Vol[S3] × Vol[S1]. (A13)

Taking into account that Vol [S2N−1] = 2πN/(N − 1)! and making use of the relation (A6),
we may write an explicit result for the volumes calculated with respect to different definitions
(A2)–(A4)

VolX[U(N)] = aU
X

2NπN(N+1)/2

0!1! · · · (N − 1)!
(A14)

where the proportionality constants read aU
A = 2N(N−1)/2, aU

B = 1 and aU
C = 2−N/2. The

result for VolA[U(N)] was rigorously derived in [15], VolB[U(N)] was given in [18],
while VolA[U(N)] and VolC[U(N)] were compared in [22]. In particular, VolA[U(1)] =
VolB[U(1)] = 2π , while VolC[U(1)] = √

2π and VolA[U(2)] = 8π3, VolB[U(2)] =
4π3, VolC[U(2)] = 2π3.

In general, the volume of a coset space may be expressed as a ratio of the volumes.
Consider for instance the manifold of all pure states of dimensionality N. It forms the complex
projective space CPN−1 = U(N)/[U(N − 1) × U(1)]. Therefore

VolX[CPN−1] = VolX[U(N)]

VolX[U(1)] VolX[U(N − 1)]
(A15)

which gives the general result

VolX[CPk] = aCP
X

πk

k!
= aCP

X Vol[B2k]. (A16)

The scale factors read aCP
A = 2k and aCP

B = aCP
C = 1. For instance VolA[CP1] = 2π which

corresponds to the circle of radius
√

2 , while VolB[CP1] = VolC[CP1] = π , equal to the area
of the circle of radius 1 . The latter convention is natural if one uses the Fubini–Study metric in
the space of pure states, DFS(|ϕ〉, |ψ〉) = arccos(

√
κ), where the transition probability is given

by κ = |〈ϕ|ψ〉|2. Then the largest possible distance DFS = π/2, obtained for any orthogonal
states, sets the geodesic length of the complex projective space to π which corresponds to the
geodesic distance of two opposite points on the unit circle, being identified. It is worth adding
that VolC[CPk] = Vol[S2k+1]/Vol[S1] and this relation was used in [20] to define the volume
VolC of complex projective spaces. We see therefore that different conventions adopted in
(A2)–(A4) lead to different sizes (geodesic lengths) of the manifolds analysed.
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Unitary orbits of a generic mixed state with a non-degenerate spectrum have the structure
of a (N2−N)-dimensional complex flag manifold F l

(N)

C
= U(N)/[U(1)]N . Hence its volume

reads

VolX
[
F l

(N)

C

] = VolX[U(N)]

(VolX[U(1)])N
= aFl

X

πN(N−1)/2

1!2! · · · (N − 1)!
(A17)

with convention-dependent scale constants aFl
A = 2N(N−1)/2 [15] and aFl

B = aFl
C = 1 [20]. It is

easy to check that the relation

VolX
[
F l

(N)

C

] = VolX[CP1] × VolX[CP2] × · · · × VolX[CPN−1] (A18)

holds for any definition (A2)–(A4), since the scale constants do cancel.
For completeness we also discuss the group SU(N), the volume of which is not equal to

Vol[U(N)]/Vol[U(1)] [16, 19, 20]. To show this let us parametrize a matrix YN ∈ SU(N) v

YN =
[

eiφ 0
0 e−i[φ/(N−1)]YN−1

] [√
1 − |h|2 −h†

h
√

I − h ⊗ h†

]
= V W (A19)

where φ ∈ [0, 2π) is an arbitrary phase and h is a complex vector with N − 1 components
such that |h| � 1. Condition det YN = 1 implies Tr Y−1

N dYN = 0. For instance, the metric
(A1) gives, if the volume is concerned

(ds)2 ∼= −Tr(V −1 dV )2 − Tr(W−1 dW)2. (A20)

Since the first factor V is block diagonal the first term is equal to (dφ)2N/(N − 1) −
Tr

(
Y−1

N−1dYN−1
)2

, while the second one gives the metric on CPN−1. Integrating an analogous
expression in the general case of an arbitrary metric and using (A15), we obtain the following
result

VolX[SU(N)] = VolX[U(N)]

VolX[U(N − 1)]

√
N

N − 1
VolX[SU(N − 1)] (A21)

which iterated N − 1 times gives the correct relation

VolX[SU(N)] =
√

N
VolX[U(N)]

VolX[U(1)]
(A22)

with the stretching factor
√

N . For instance, working with the measure (A4) and making use of
(A14) we obtain VolC[SU(N)] = √

N2(N−1)/2π(N+2)(N−1)/2/[1! · · · (N −1)!], so in particular,
VolC[SU(2)] = 2π2, VolC[SU(3)] = √

3π5 and VolC[SU(4)] = √
2π9/3, consistently with

the results obtained in [16, 20, 22, 38].

A.2. Orthogonal group O(N)

The analysis of the orthogonal group is simpler, since (O−1 dO)T = −(O−1 dO)T , so
the diagonal elements of Tr(O−1dO)2 vanish. Thus we shall consider only two metrics
(analogous to the measures (A2)–(A4)) with different scalings,

(dsA)2 := −Tr(O−1 dO)2 = 2
N∑

j<k=1

|(O−1 dO)jk|2 (A23)

used in section 7 of this work, and

(dsB)2 = (dsC)2 := −1

2
Tr(O−1 dO)2 =

N∑
j<k=1

|(O−1 dO)jk|2 (A24)

which both lead to the Haar measure on the orthogonal group.
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To obtain the volume of O(N) we proceed as in the unitary case and parametrize an
orthogonal matrix of size N as

ON =
[
O1 0
0 ON−1

] [√
1 − |h|2 −hT

h
√

I − h ⊗ hT

]
(A25)

where O1 ∈ O(1) = ±, while h is here a real vector with N −1 components such that |h| � 1.
Representing the metric (dsB)2 by these two matrices we see that the term containing only the
vector h gives the metric of a real projective space. Integrating the resulting volume element
(with scale factor 1) we obtain the volume of RPN−1, equal to 1

2 Vol[SN−1]. Taking into account
a factor of two resulting from O(1) we arrive at VolB[O(N)] = VolB[O(N − 1)] Vol[SN−1],
which applied recursively leads to

VolB[O(N)] = Vol[SN−1] × · · · × Vol[S1] × Vol[S0] =
N∏

k=1

2πk/2

(k/2)
(A26)

where Vol[S0] = Vol[O(1)] = 2. To get an equivalent result for the metric (A23) we have to
take into account the factor

√
2 which occurs for each of N(N − 1)/2 off-diagonal elements.

Doing so we obtain

VolA[O(N)] = 2N(N−1)/4 VolB[O(N)] = 2N(N+3)/4
N∏

k=1

πk/2

(k/2)
(A27)

in agreement with Hua [15]. In particular, VolA[O(1)] = VolB[O(1)] = 2, while
VolA[O(2)] = 4

√
2π, VolB[O(2)] = 4π and VolA[O(3)] = 32

√
2π2, VolB[O(3)] = 16π2.

In full analogy with the unitary case we obtain the volume of the real projective manifold

VolX[RPN−1] = VolX[O(N)]

VolX[O(1)] VolX[O(N − 1)]
. (A28)

For the metric (A24) this expression reduces to VolB[RPk] = 1
2 Vol[Sk]. Hence, this metric

may be called the ‘unit sphere’ metric, while the convention (A23) may be called the ‘unit
trace’ metric.

In the similar way we find the volume of the real flag manifolds, used in analysis of real
density matrices,

VolX
[
F l

(N)

R

] = VolX[O(N)]

(VolX[O(1)])N
= 1

2N
VolX[O(N)]. (A29)

Exactly as in the complex case we observe that the relation

VolX
[
F l

(N)

R

] = VolX[RP1] × VolX[RP2] × · · · × VolX[RPN−1] (A30)

is satisfied for any definition of the metric.
Computation of the volume of the special orthogonal group SO(N) is much easier than in

the complex case, since there are no diagonal elements in the metric and hence, no stretching
factors. For any normalization one gets

VolX[SO(N)] = VolX[O(N)]

VolX[O(1)]
= 1

2
VolX[O(N)]. (A31)

In particular, we get VolB[SO(2)] = 2π and VolB[SO(3)] = VolC[SO(3)] = 8π2. The
latter results seem to be inconsistent with VolC[SU(2)] = 2π2, since there exists a one to two
relation between both groups. This paradox is resolved by analysing the scale effects [20]: the
volume of SU(2) is twice as large as the volume of the real projective manifold conjugated to
SO(3) of the appropriate geodesic length, VolC[RP3] = π2.



10130 K Życzkowski and H-J Sommers

References

[1] Bloore F J 1976 J. Phys. A: Math. Gen. 9 2059
[2] Harriman 1978 Phys. Rev. A 17 1249
[3] Adelman M, Corbett J V and Hurst C A 1993 Found. Phys. 23 211
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